Bounded Multiplier Convergence in Measure of Random Vector Series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

Convergence of Random Fourier Series

This paper will study Fourier Series with random coefficients. We begin with an introduction to Fourier series on the torus and give some of the most important results. We then give some important results from probability theory, and build on these to prove a variety of theorems that deal with the convergence or divergence of general random series. In the final section, the focus is placed on r...

متن کامل

operator valued series and vector valued multiplier spaces

‎let $x,y$ be normed spaces with $l(x,y)$ the space of continuous‎ ‎linear operators from $x$ into $y$‎. ‎if ${t_{j}}$ is a sequence in $l(x,y)$,‎ ‎the (bounded) multiplier space for the series $sum t_{j}$ is defined to be‎ [ ‎m^{infty}(sum t_{j})={{x_{j}}in l^{infty}(x):sum_{j=1}^{infty}%‎ ‎t_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $s:m^{infty}(sum t_{j})rightarrow y$ associat...

متن کامل

Mean Convergence of Vector–valued Walsh Series

Given any Banach space X, let L X 2 denote the Banach space of all measurable functions f : [0, 1] → X for which f 2 := 1 0 f (t) 2 dt

متن کامل

Convergence in Distribution of Random Metric Measure Spaces

We consider the space of complete and separable metric spaces which are equipped with a probability measure. A notion of convergence is given based on the philosophy that a sequence of metric measure spaces converges if and only if all finite subspaces sampled from these spaces converge. This topology is metrized following Gromov’s idea of embedding two metric spaces isometrically into a common...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.2307/2040375